

Oakland University Proudly Presents:

IGVC 2012

Student Members:

Micho Radovnikovich – Ph.D, Systems Engineering

Lincoln Lorenz – Ph.D, Electrical Engineering

Kevin Hallenbeck – Junior, Computer Engineering

Steve Grzebyk – M.S., Electrical Engineering

Michael Truitt – Senior, Electrical Engineering

Michael Norman – Senior, Electrical Engineering

Paul Abdo – M.S., Electrical Engineering

Oscar Vasquez – Sophomore, Electrical Engineering

Kiran Iyengar – M.S., Systems Engineering

Ryan Bowman – Sophomore, Electrical Engineering

Raphael Parker – Sophomore, Computer Engineering

Joe Suriano – Freshman, Mechanical Engineering

Faculty Advisor: Dr. Ka C. Cheok

I certify that the engineering design present in this vehicle is significant and equivalent to

work that would satisfy the requirements of a senior design or graduate project course.

Signed,

_______________________________, Dr. Ka C. Cheok, Faculty Advisor

1

1 Introduction

Oakland University is proud to enter Botzilla into the 20
th

 annual Intelligent Ground Vehicle

Competition! Botzilla is a very rugged platform, featuring four-wheel drive and double

Ackermann steering control (Section 3.2). An FPGA is used to implement fast sensor data

processing and high sample-rate control algorithms (Section 5), and the computer vision and

path planning algorithms are implemented in the very powerful and popular Robot Operating

System (ROS) Environment (Section 6). Significant improvements were made over last year’s

design, including a better-designed electrical system and much more sophisticated software and

path planning algorithms.

1.1 Team Organization

The Oakland University team consists of 11 members, with a composition of about 50%

graduate students and 50% undergraduate students, majoring in electrical and computer

engineering. Figure 1 shows the organization of the team and how the responsibility is

distributed. Each major sub-system of Botzilla has its own captain responsible for taking the

lead role in its development. The captains were in charge of managing the rest of the group and

guiding them towards completion of their respective components. It is estimated that about 1000

person-hours were invested in the development of Botzilla since the 2011 IGVC to modify and

improve the mechanical, electrical and software systems.

Leadership

Micho

Radovnikovich

Mechanical

Mike Norman

Low-Level Software

Kevin Hallenbeck

High-Level Software

Lincoln Lorenz

Electrical

Steve Grzebyk

Mike Truitt

Joe Suriano

Mike Truitt

Paul Abdo

Raphael Parker

Micho Radovnikovich

Ryan Bowman

Kevin Hallenbeck

Micho Radovnikovich

Oscar Vasquez

Kiran Iyengar

Figure 1: Chart outlining the team’s organization.

2

1.2 Design Process

A classic ‘V-Model’ design

process was followed to develop

Botzilla, shown in Figure 2. After

deciding on the concept of Botzilla,

the requirements to achieve it were

defined and a design was formed.

 After implementing the design and

integrating the various components, a

rigorous test cycle began, where

consistent failure points were

identified and rectified through minor

adjustments or larger design

modifications. To test the robot’s

navigation system, a series of specific obstacle configurations were designed for the purpose of

generating repeatable testing scenarios. This way, any changes in the software could be

compared to previous versions by testing it in the same situations.

2 Innovations

Below is a list of the main innovative aspects of Botzilla’s design. They are summarized

here, and discussed in more detail in their respective sections.

 Monocular vision-based obstacle, line and flag detection (Section 7)

 Automatic camera calibration (Section 7.4)

 Robot Operating System (ROS) software integration (Section 6)

 Kalman filter-based sensor fusion algorithm (Section 8.1)

 SLAM-based mapping of the robot’s environment (Section 8.2)

 Custom H-Bridge design and fabrication (Section 4.1)

 FPGA-based sensor data gathering and drive control system (Section 5)

Concept

Requirements

Design

Implementation

Integration

Testing

Evaluation

Figure 2: V-Model design process.

3

3 Mechanical Design

3.1 Chassis

The chassis of the robot is a simple ladder style design. This

allowed for easy assembly and a rugged structure. The payload

carrier is under the main chassis, allowing the quick installation

and removal of the competition payload. A significant portion

of Botzilla is built from aluminum in order to minimize weight.

The use of steel was kept to a minimum; used only when

strength or ease of fabrication dictated the need for it. All the

electronics and batteries are covered by a custom fiberglass

cover, which makes the body of the vehicle virtually

weatherproof.

3.2 Drive Train

Each of Botzilla’s four wheels has a brushed DC motor to

drive it. The use of four-wheel drive allows for consistent

locomotion while traversing irregular terrain. The four-wheel

drive also allows the robot to ascend steep inclines with relative

ease.

To steer, two linear actuators are used to rotate the front and

rear wheels. Each linear actuator directly drives the left side,

and is connected to the right side through a tie rod link. The link

has opposing threads on the ends allowing alignment

adjustments to be made. The double Ackermann steering allows

for decent mobility in confined quarters while maintaining

control of Botzilla under extreme conditions.

4 Electronic Components

4.1 H-Bridges

Botzilla’s H-bridges are completely custom-designed PCBs.

 Based on past experience with other H-bridges such as IFI’s

Botzilla's chassis

Drive Axle

Chassis with cover

Steering mechanism

Figure 3: Botzilla’s mechanical

design

4

Victor series, it was desired to use an H-bridge that is more flexible, robust, and capable of

chopping the motor power at a much higher frequency. A conventional single-channel PWM

signal controls the speed and direction of the H-bridge output.

Key features of the H-bridges are:

 Reverse battery protection

 On-board fuses

 Automatic fan control

 Over-current detection

 Temperature monitoring

 Serviceable components

4.2 Sensors

Botzilla is equipped with an array of sensors that allow it to detect obstacles around it,

compute its location, heading and speed, and be operated in a safe and reliable manner. The

sensor array consists of:

 NovaTel FlexG2-Star GPS receiver

o 8 Hz, less than 1 meter accuracy

 MicroEye UI-155xLE USB 2.0 Camera

o 1280x1024 resolution, 1/2" CMOS sensor, 8 bits per channel

 Hokuyo URG-04LX LIDAR sensor

o 4 meter range, 240 degree field of view, 0.36 degree resolution

 Phoenix America P9122 magnetic wheel encoders

o 800 pulses per wheel rotation

 DX5E wireless R/C aircraft joystick

o Embedded controller-based manual control and wireless E-stop

 Honeywell HMC5843 tri-axis magnetometer

 Analog Devices ADXL345 tri-axis accelerometer

 InvenSense ITG-3200 tri-axis gyro

4.3 Computing Hardware

Botzilla’s computing system is distributed between a Dell Latitude E5410 laptop running

Ubuntu and ROS (Section 6), and a Xilinx Spartan3E FPGA, employing a MicroBlaze soft

processor and custom hardware modules written in VHDL (Section 5). The two communicate

Figure 4: Custom H-bridge

5

with each other over a single RS232 link, through which the FPGA transmits sensor data to the

computer, and the computer transmits motor control messages to the FPGA.

For the JAUS challenge, an external computer communicates with the Ubuntu laptop using

and on-board IEEE 802.11g wireless router, and relays the processed JAUS commands. The

Ubuntu laptop also responds back with the data reports necessary to satisfy the requirements of

the JAUS challenge. The wireless router is also used to debug real-time software and adjust

parameters on the fly.

4.4 Power Distribution

Botzilla’s 24V power source

is derived from four 12V AGM

lead acid batteries, arranged with

two parallel sets in series, with a

total charge capacity of about 60

AH. The 24 volts are wired

directly to the H-bridges through

the E-stop, which then pulse

power to the motors according to the PWM control signals coming from the FPGA. The FPGA

board takes a 12 volt power input, coming from a switching DC-DC step down converter. The

FPGA board has its own on-board switching regulator that powers the small sensors connected to

it, as well as the Spartan3E itself. The 12 volt regulator also powers the GPS unit and the on-

board wireless router. Another step-down regulator is used to provide clean 5V power to the

Hokuyo LIDAR sensor.

4.5 Control Box

A waterproof control box, shown in Figure 6, is mounted on the camera shaft of Botzilla, and

provides convenient operation of the vehicle in testing and performance scenarios. There are

several switches that control power to various components inside the vehicle, including the GPS

unit, wireless router, LIDAR and case fans. This makes the electrical system more power

efficient by being able to turn off specific components when they are not necessary. A turn-to-

release E-stop switch is also mounted in the box, and immediately cuts power to the motors

when pressed. An Arduino processor is connected to a 4x20 character LCD screen, upon which

it projects diagnostic data from the FPGA. Finally, the control box was designed to fit an

24 VDC

AGM
Batteries

H-Bridges

12V DC-DC

Motors

FPGA, GPS, Router

Figure 5: Block diagram of how power is distributed to the on-

board components

5V DC-DC Lidar

6

Android tablet, which is used as a remote control

and quick parameter adjustment device. Figure 6

shows a picture of the control box.

4.6 Safety Considerations

Botzilla is a very powerful vehicle with lots

of torque and is capable of slightly over 10 mph.

As such, it has potential to be dangerous.

Therefore, many precautions were taken into

account when designing the emergency stop

system, where many layers of protection exist.

Besides the conventional turn-to-release E-stop

switch, the DX5E joystick is capable of disabling

the motor output wirelessly from up to a couple

hundred feet away. In addition, the drive control system automatically turns off the motors if it

fails to receive commands from the computer after a short time.

5 FPGA System

All of Botzilla’s hardware interface

functionality is implemented on a single 1.2

million gate-equivalent Spartan 3E FPGA,

utilizing custom hardware components

developed in VHDL, and a Xilinx

MicroBlaze soft processor running C code.

The system was designed to process the

data from the sensors (Section 4.2), extract

the measurements, assemble the data into a

convenient serial packet and transmit it all

to the computer. At the same time, the

drive control algorithms interpret vehicle

motion commands from the computer and

Xilinx
MicroBlaze

Soft Processor

P
ro

c
e
s
s
o

r
B

u
s

LEDs and

7 Segment Display

PWM Drivers

I2C Controller

SPI Controller

Input Capture
Diagnostics

Serial

Port

Figure 7: Custom FPGA Architecture

Component

power switches

Diagnostics

display

Master power

switch

Figure 6: Botzilla’s control box

Weatherproof
tablet enclosure

7

apply closed-loop control to the motors. Figure 7 shows a block diagram of the FPGA

architecture.

5.1 Data Gathering

Custom hardware was developed in VHDL to gather the data from the sensors and drive the

H-Bridges. These hardware components consist of:

 Six parallel PWM channels, capable of independent control of each motor

 One I
2
C controller to grab data from the gyro, accelerometer and magnetometer

 One SPI controller used to interface to external A/D hardware module to measure the

steering angles, and apply high-speed filtering to clean up the measurements

 Four parallel input capture channels to grab data from the magnetic wheel encoders

All the custom hardware is interfaced to the MicroBlaze processor by means of a 32-bit wide

processor bus, clocked at 50 MHz. The processor addresses each hardware component in

sequence and refreshes its measurement from each sensor. At a rate of 20 Hz, it packages all the

data into a serial packet and transmits it to the computer.

5.2 Drive Control

Botzilla’s drive system consists of four DC motors rotating the wheels of the vehicle, and

two DC linear actuators controlling the steering mechanism on the front and rear wheels.

Making use of the wheel encoder data being gathered by the FPGA, the MicroBlaze processor

applies PI control to the wheel motors to match speed commands from the computer. Likewise,

the potentiometers on the steering motors are used by the MicroBlaze processor to apply a lead-

lag compensator to track angular position commands from the computer.

6 ROS Software Platform

Botzilla’s software systems are implemented on the Robot Operating System (ROS)

platform. ROS is an open-source development environment that runs in Ubuntu Linux. There is

a multitude of built-in software packages that implement common robotic functionality. Firstly,

there are many drivers for common sensors like LIDAR, cameras and GPS units. There are also

general-purpose mapping and path planning software modules that allow for much faster

implementation of sophisticated navigation algorithms.

8

6.1 Efficient Node Communication

An ROS system consists of a network of individual software modules called “nodes”. Each

node is developed in either C++ or Python, and runs independently of other nodes. The nodes

are all controlled by the ROS core. Inter-node communication is made seamless by a behind-the-

scenes message transport layer. A node can simply “subscribe” to a message that another node is

“publishing” through a very simple structure-based interface in C++. This allows for the

development of easily modular and re-useable code, and shortens implementation time of new

code.

6.2 Debugging Capabilities

One of the most powerful features of ROS is the debugging capability. Any message passing

between two nodes can be recorded in a “bag” file. Bag files timestamp every message so that

during playback, the message is recreated as if it were being produced in real time. This way,

software can be written, tested and initially verified without having to set up and run the robot.

Another convenient debugging feature is the reconfigure_gui. This is an ROS node that

allows users to change program parameters on the fly using graphical slider bars. This tool is

invaluable, since most robotic vehicle controllers require precise adjustment of several

parameters, and being able to change them while the program is running is very beneficial.

7 Computer Vision

Botzilla’s computer vision system is used in combination with a LIDAR to detect obstacles

and lines in front of the robot. There are two separate algorithms used, one for general obstacle

detection and another for flag detection. The input images of the system are first rectified using

built in ROS functions. This compensates for the lens and camera sensor distortion making pixel

coordinates linear with respect to the azimuth and zenith angular coordinates of the camera.

Since object detection in the robot’s environment is highly color based, both algorithms use

the Hue Saturation Value (HSV) color space. The Hue component describes the color much like

a human would identify colors of the rainbow spectrum. The saturation component describes the

closeness of the ratio of the color information to the pixel’s intensity. Using HSV allows the

systems to be relatively agnostic to lighting differences in an image. For instance, the color in

the Hue component of HSV changes slightly from normally lit grass to grass with the shadow of

an obstacle.

9

7.1 Line and Obstacle Detection

General line and obstacle detection for Botzilla is done using an adaptive median thresholding

algorithm shown in Figure 8. Since the competition course consists of mainly grass, the

algorithm essentially defines anything that is not grass in the image as an obstacle.

However, it was noticed that if the color of grass is defined to

be a specific hue, some of the grass would be detected as an

obstacle depending on the conditions. An adaptive median was

added that calculates the median of the image and uses it as a

replacement for the fixed value for thresholding. The assumption

is that the main component of the image will be the grass. In some

situations this is not the case. For instance, if the robot

approaches several orange barrels the median will shift out of

green and into the range of orange.

 To prevent this from affecting the

detection, an enhancement was made

that records the deviation of the

median of a representative video of

grass. This way the system can be trained with a realistic range of

colors that grass can be. When the median moves out of this range,

the system will replace its value with the last good value of the

median.

7.2 Flag Detection

Due to the different rules associated with flags, a separate flag

detector was required for the system. Flags are distinctive using a combination of their size and

color in an image. They are first detected by their color using a window thresholding algorithm,

where the red and blue colors are each given a selective range that they are identified by. Pixels

within each of the ranges are labeled ‘1’ in their respective images. A max and min width of

flags that appear in the image was determined experimentally.

To reject those red and blue components that fall outside these boundaries a morphological

open is computed twice, once using a structuring element with the min width, once using a

Calculate
Median of Hue

Figure 8: Median Thresholding

Label pixels not
in range of

median,
“Obstacles”

Convert to
HSV

Morph Open

Figure 9: Sample Obstacle

Detection

10

structuring element with the max width plus one. The results are exclusive OR-ed together to

reject those that fall outside the range.

To remove noise introduced by the HSV conversion

of pixels that don't have significant color, the saturation

component is used. Pixels with values of saturation less

than a certain constant value are not considered as flags.

The results of a sample field of flags are shown in

Figure 10.

7.3 Obstacle Localization

After the obstacles, lines and flags are detected, the

next step is to transform their position in the camera

image into relative position from the vehicle. This is done through a calibrated reference frame

transformation. The main assumption is that all detected obstacles are on flat ground, and that

the bottom-most detected pixel in each column represents a point on the ground. An imitated

LIDAR scan is then constructed by transforming each of these ground-level pixels into the

vehicle reference frame. This is adjusted for the flags, since they are not positioned directly on

the ground. In this case, an estimated height above the ground is assumed and used in the

projection procedure.

Figure 11 shows a block diagram of the transformation procedure. The entire algorithm is

calibrated by measuring 5 parameters: the height of the camera h, the azimuth and zenith field of

view angles ψ and ρ, and the pitch and yaw orientation of the camera θ and φ. The values of ,

 and are relatively easy to measure, but the orientation angles are not so easy, and inaccurate

measurements can throw off positional accuracy significantly. This complication was mitigated

Pixel
Projection

Figure 11: Object location transformation

Raw
Pixels

Camera
Frame

Camera Pitch

Rotation

Camera Yaw
Rotation

Vehicle
Frame

Parameters: h, ψ, ρ θ φ

Figure 10: Sample Flag Detection

11

by devising an automatic calibration algorithm.

7.4 Automatic Camera Calibration

Two objects are placed at known positions relative to the robot, and the pixel locations of

each are set using the ROS reconfigure_gui node. A K-means based learning algorithm uses

these known quantities, and recursively estimates the two unknown angles. The resulting

calibration data has proven to be very accurate, with positions of detected obstacles being off by

no more than 5% at any point.

8 Navigation System

A block diagram of Botzilla’s navigation system is shown in Figure 12. The vehicle’s

position and velocity is estimated by a Kalman filter that combines the measurements from all

the sensors. The position estimate and obstacle data are then fed into a SLAM mapping

algorithm that constructs a map of the robot’s surroundings, allowing the robot to remember

what it has seen before. The global path planner uses the map and position estimate to construct

a path to the current goal point. The local planner then decides on vehicle motion commands

that move the robot along the global path.

Finally, a command bridge node is written to interpret the vehicle motion commands and

translate them into Botzilla-specific control signals, while at the same time keeping track of

waypoints, and sending the current waypoint to the global planner. Figure 14 shows a screenshot

of the Rviz 3-D visualization program showing an example of how the path planners find ways

around the obstacles.

8.1 Kalman Filtering

The Kalman filter performs sensor fusion, where individual, noisy sensors are combined to

estimate the position and velocity of the vehicle. At the heart of the algorithm is a carefully

derived kinematic state space model of Botzilla’s double-Ackermann style configuration. The

filter attributes how much noise is expected on each sensor, and how quickly the individual state

variables change in the real world, and applies a set of recursive equations that estimate the state

values based on current and prior sensor measurements. Figure 13 shows a block diagram of the

Kalman filter algorithm.

12

8.2 SLAM Mapping

The Simultaneous Localization and Mapping (SLAM) algorithm is implemented in the built-

in ROS package called slam_gmapping. This package accepts obstacle scan data from the object

localization system (Section 7.3) and the Hokuyo LIDAR, and uses the position estimate from

the Kalman filter. slam_gmapping then constructs a map by adding the new scan data, while

Kalman
Filter

Global Path
Planner

Local Path
Planner

Command
Bridge

SLAM

Obstacle

Map

Robot State

Estimate

Path to

Target

Motion

Commands

Botzilla

Commands

Waypoint

Target

Vision Scan

Robot State

Estimate

Lines

Obstacles

Flags

Sensor Data

Lidar Scan

Figure 12: Botzilla’s navigation system

Compute

Kalman gain

Update model

prediction

Linearize

model at ̂

Initialize state

estimate ̂

Grab new
measurements

Update state

estimate ̂

Figure 13: Kalman filter algorithm

13

correlating the scan data with the existing map to avoid double-

mapping the same obstacles, and to re-align the map to account

for gradual drift error.

8.3 Global Path Planning

The global path planning algorithm is based on A*, and is

part of the sbpl_lattice_planner package built into ROS. The

planner takes in the state estimate from the Kalman filter, the

map generated by slam_gmapping, and the location of the

current waypoint from the command bridge, and solves an

optimal path from the current robot position to the goal. This

optimal path is generated from a sequence of feasible

maneuvers based on the robot’s dynamics. It then sends out this

path as a sequence of points for the local planner to use.

8.4 Local Path Planning

The role of the local path planner is to follow the global path to the goal as closely as

possible, while adding reactionary obstacle avoidance behavior. In addition, it detects scenarios

where the robot is stuck, and finds a way to escape using the constraints of the map. The local

planner is based on the base_local_planner ROS node, but modified to support Botzilla’s

specific requirements for IGVC.

8.5 Command Bridge

The command bridge converts the vehicle motion commands from the local path planner and

turns them into individual motor speed and steering angle commands to be sent to the FPGA.

The bridge also monitors the waypoint list and the vehicle’s current GPS location, and

communicates with the global path planner to generate paths to the current goal. It is written in

C++ code and run as a ROS node.

9 Performance Analysis

9.1 Maximum Speed

Botzilla’s motors spin at 157 RPM at nominal load, so combined with 15 inch diameter

wheels, the resulting maximum speed is 10.3 mph. This estimate correlates with the observed

performance.

Figure 14: Visualization of the

mapping and path

planning systems

14

9.2 Ramp Climbing Ability

At nominal load, the drive motors provide 101 in-lbs of torque. Assuming a realistic vehicle

weight of 175 lbs, this corresponds to a max slope of 18 degrees. However, experiments have

shown that Botzilla can handle much steeper slopes, up to about 30 degrees, although not at the

nominal load of the motors.

9.3 Reaction Time

The ROS system running on the laptop gathers new sensor readings from the FPGA at 20Hz,

and processes camera frames and extracts obstacle locations at 15 frames per second. The

artificial intelligence systems were designed to be able to handle this frequency easily, thereby

allowing the robot to make new decisions at the slowest sensor sampling rate 15 Hz = 66.7 ms.

9.4 Battery Life

The AGM batteries on Botzilla provide a total of 60 AH. The sensors and FPGA consume 2

amps. Experiments have shown that the steering motor current draw averages 3 amps under

normal operating conditions, and that the drive motors consume a total of 25 amps maximum in

a grass environment typically encountered at IGVC. Based on these observations, total battery

life is approximately 2 hours.

9.5 Obstacle Detection Range

Using the monocular vision-based obstacle detection system (Section 7.1), obstacles can be

detected up to a maximum of 24 feet away, although it was experimentally determined that

vision measurement data becomes most reliable within 17 feet. The camera configuration also

makes the front of the vehicle visible. This allows for the vision system to detect lines and

obstacles up to 3 feet to either side of the front wheels, thereby minimizing the size of critical

blind spots. The Hokuyo LIDAR has a range of about 13 feet, but has shown to provide less

noisy distance measurements at longer range than the camera system.

9.6 GPS Accuracy

Under normal conditions, the Novatel FlexPackG2-Star GPS receiver is accurate to within 1

meter, which is enough positional accuracy to reach the small waypoints on the GPS Challenge

course. However, the Kalman filter algorithm (Section 8.1) fuses the GPS readings with the rest

of the sensors to eliminate some of the noise.

15

10 Vehicle Equipment Cost

A breakdown of the cost of the components on Botzilla is shown in Table 1.

Table 1: Cost breakdown of components

Item Cost Cost to Team

FlexG2-Star GPS Unit $1,000 $1,000

Hokuyo URG-04LX LIDAR $2,375 $0
1

Dell Latitude E5410 Laptop $800 $800

MicroEye UI-155xLE Camera $460 $460

Sparkfun 9-DOF Sensor Stick $89 $89

Phoenix America P9122 Encoders $152 $152

(4) 12V AGM Batteries $375 $0
2

Power Electronics $600 $600

Fiberglass Body $2,000 $0
3

Electromechanical Components $1,000 $1,000

Frame Materials $1,000 $1,000

Total $9,851 $5,101

11 Conclusion

Botzilla has proven to be very rugged, efficient and reliable, performing well while driving

on any kind of terrain. The new artificial intelligence design shows promising results, and the

Oakland University team has great confidence going into this year’s competition.

Acknowledgements

The Oakland Robotics Association would like to thank several people and organizations. The

team first of all thanks their advisor, Dr. Ka C. Cheok, for his invaluable advice and guidance.

Thanks also to the School of Engineering and Computer Science and its dean, Dr. Louay

Chamra, for generous funding and lab space to work in. Finally, thanks to our external sponsors

Molex, Sankeur Composite Technologies and Battery Giant, whose donations of certain

components of the vehicle were critical to its development.

1
 Re-used from previous vehicle

2
 Part of a larger donation from Battery Giant, Rochester Hills

3
 Custom-made and donated by Sankuer Composite Technologies

