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1 Introduction 

Oakland University is proud to enter Botzilla into the 20
th

 annual Intelligent Ground Vehicle 

Competition!  Botzilla is a very rugged platform, featuring four-wheel drive and double 

Ackermann steering control (Section 3.2).  An FPGA is used to implement fast sensor data 

processing and high sample-rate control algorithms (Section 5), and the computer vision and 

path planning algorithms are implemented in the very powerful and popular Robot Operating 

System (ROS) Environment (Section 6).  Significant improvements were made over last year’s 

design, including a better-designed electrical system and much more sophisticated software and 

path planning algorithms. 

1.1 Team Organization 

The Oakland University team consists of 11 members, with a composition of about 50% 

graduate students and 50% undergraduate students, majoring in electrical and computer 

engineering.  Figure 1 shows the organization of the team and how the responsibility is 

distributed.  Each major sub-system of Botzilla has its own captain responsible for taking the 

lead role in its development.  The captains were in charge of managing the rest of the group and 

guiding them towards completion of their respective components.  It is estimated that about 1000 

person-hours were invested in the development of Botzilla since the 2011 IGVC to modify and 

improve the mechanical, electrical and software systems. 

   

Leadership 

Micho 

Radovnikovich 

Mechanical 

Mike Norman 

Low-Level Software 

Kevin Hallenbeck 

High-Level Software 

Lincoln Lorenz 

Electrical 

Steve Grzebyk 

Mike Truitt 

Joe Suriano 

 

Mike Truitt 

Paul Abdo 

Raphael Parker 

 

  

Micho Radovnikovich 

Ryan Bowman 

 

  

  

Kevin Hallenbeck 

Micho Radovnikovich 

Oscar Vasquez 

Kiran Iyengar 

  

  
Figure 1: Chart outlining the team’s organization. 
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1.2 Design Process 

A classic ‘V-Model’ design 

process was followed to develop 

Botzilla, shown in Figure 2.  After 

deciding on the concept of Botzilla, 

the requirements to achieve it were 

defined and a design was formed. 

 After implementing the design and 

integrating the various components, a 

rigorous test cycle began, where 

consistent failure points were 

identified and rectified through minor 

adjustments or larger design 

modifications.  To test the robot’s 

navigation system, a series of specific obstacle configurations were designed for the purpose of 

generating repeatable testing scenarios.  This way, any changes in the software could be 

compared to previous versions by testing it in the same situations. 

2 Innovations 

Below is a list of the main innovative aspects of Botzilla’s design.  They are summarized 

here, and discussed in more detail in their respective sections. 

 Monocular vision-based obstacle, line and flag detection (Section 7) 

 Automatic camera calibration (Section 7.4) 

 Robot Operating System (ROS) software integration (Section 6) 

 Kalman filter-based sensor fusion algorithm (Section 8.1) 

 SLAM-based mapping of the robot’s environment (Section 8.2) 

 Custom H-Bridge design and fabrication (Section 4.1) 

 FPGA-based sensor data gathering and drive control system (Section 5) 
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Figure 2: V-Model design process. 
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3 Mechanical Design 

3.1 Chassis 

The chassis of the robot is a simple ladder style design.  This 

allowed for easy assembly and a rugged structure. The payload 

carrier is under the main chassis, allowing the quick installation 

and removal of the competition payload.  A significant portion 

of Botzilla is built from aluminum in order to minimize weight.  

The use of steel was kept to a minimum; used only when 

strength or ease of fabrication dictated the need for it.  All the 

electronics and batteries are covered by a custom fiberglass 

cover, which makes the body of the vehicle virtually 

weatherproof. 

3.2 Drive Train 

Each of Botzilla’s four wheels has a brushed DC motor to 

drive it.  The use of four-wheel drive allows for consistent 

locomotion while traversing irregular terrain.  The four-wheel 

drive also allows the robot to ascend steep inclines with relative 

ease. 

To steer, two linear actuators are used to rotate the front and 

rear wheels.  Each linear actuator directly drives the left side, 

and is connected to the right side through a tie rod link.  The link 

has opposing threads on the ends allowing alignment 

adjustments to be made.  The double Ackermann steering allows 

for decent mobility in confined quarters while maintaining 

control of Botzilla under extreme conditions. 

4 Electronic Components 

4.1 H-Bridges 

Botzilla’s H-bridges are completely custom-designed PCBs. 

 Based on past experience with other H-bridges such as IFI’s 

Botzilla's chassis  

Drive Axle 

Chassis with cover 

Steering mechanism 

Figure 3: Botzilla’s mechanical 

design 
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Victor series, it was desired to use an H-bridge that is more flexible, robust, and capable of 

chopping the motor power at a much higher frequency.  A conventional single-channel PWM 

signal controls the speed and direction of the H-bridge output. 

Key features of the H-bridges are: 

 Reverse battery protection 

 On-board fuses 

 Automatic fan control 

 Over-current detection 

 Temperature monitoring 

 Serviceable components 

4.2 Sensors 

Botzilla is equipped with an array of sensors that allow it to detect obstacles around it, 

compute its location, heading and speed, and be operated in a safe and reliable manner.  The 

sensor array consists of: 

 NovaTel FlexG2-Star GPS receiver 

o 8 Hz, less than 1 meter accuracy 

 MicroEye UI-155xLE USB 2.0 Camera 

o 1280x1024 resolution, 1/2" CMOS sensor, 8 bits per channel 

 Hokuyo URG-04LX LIDAR sensor 

o 4 meter range, 240 degree field of view, 0.36 degree resolution 

 Phoenix America P9122 magnetic wheel encoders 

o 800 pulses per wheel rotation 

 DX5E wireless R/C aircraft joystick 

o Embedded controller-based manual control and wireless E-stop 

 Honeywell HMC5843 tri-axis magnetometer 

 Analog Devices ADXL345 tri-axis accelerometer 

 InvenSense ITG-3200 tri-axis gyro  

4.3 Computing Hardware 

Botzilla’s computing system is distributed between a Dell Latitude E5410 laptop running 

Ubuntu and ROS (Section 6), and a Xilinx Spartan3E FPGA, employing a MicroBlaze soft 

processor and custom hardware modules written in VHDL (Section 5). The two communicate 

Figure 4: Custom H-bridge 
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with each other over a single RS232 link, through which the FPGA transmits sensor data to the 

computer, and the computer transmits motor control messages to the FPGA.   

For the JAUS challenge, an external computer communicates with the Ubuntu laptop using 

and on-board IEEE 802.11g wireless router, and relays the processed JAUS commands.  The 

Ubuntu laptop also responds back with the data reports necessary to satisfy the requirements of 

the JAUS challenge.  The wireless router is also used to debug real-time software and adjust 

parameters on the fly. 

4.4 Power Distribution 

Botzilla’s 24V power source 

is derived from four 12V AGM 

lead acid batteries, arranged with 

two parallel sets in series, with a 

total charge capacity of about 60 

AH.  The 24 volts are wired 

directly to the H-bridges through 

the E-stop, which then pulse 

power to the motors according to the PWM control signals coming from the FPGA.  The FPGA 

board takes a 12 volt power input, coming from a switching DC-DC step down converter.  The 

FPGA board has its own on-board switching regulator that powers the small sensors connected to 

it, as well as the Spartan3E itself.  The 12 volt regulator also powers the GPS unit and the on-

board wireless router.  Another step-down regulator is used to provide clean 5V power to the 

Hokuyo LIDAR sensor. 

4.5 Control Box 

A waterproof control box, shown in Figure 6, is mounted on the camera shaft of Botzilla, and 

provides convenient operation of the vehicle in testing and performance scenarios.  There are 

several switches that control power to various components inside the vehicle, including the GPS 

unit, wireless router, LIDAR and case fans.  This makes the electrical system more power 

efficient by being able to turn off specific components when they are not necessary.  A turn-to-

release E-stop switch is also mounted in the box, and immediately cuts power to the motors 

when pressed.  An Arduino processor is connected to a 4x20 character LCD screen, upon which 

it projects diagnostic data from the FPGA.  Finally, the control box was designed to fit an 
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Android tablet, which is used as a remote control 

and quick parameter adjustment device.  Figure 6 

shows a picture of the control box. 

4.6 Safety Considerations 

Botzilla is a very powerful vehicle with lots 

of torque and is capable of slightly over 10 mph.  

As such, it has potential to be dangerous.  

Therefore, many precautions were taken into 

account when designing the emergency stop 

system, where many layers of protection exist.  

Besides the conventional turn-to-release E-stop 

switch, the DX5E joystick is capable of disabling 

the motor output wirelessly from up to a couple 

hundred feet away.  In addition, the drive control system automatically turns off the motors if it 

fails to receive commands from the computer after a short time. 

5 FPGA System 

All of Botzilla’s hardware interface 

functionality is implemented on a single 1.2 

million gate-equivalent Spartan 3E FPGA, 

utilizing custom hardware components 

developed in VHDL, and a Xilinx 

MicroBlaze soft processor running C code.  

The system was designed to process the 

data from the sensors (Section 4.2), extract 

the measurements, assemble the data into a 

convenient serial packet and transmit it all 

to the computer.  At the same time, the 

drive control algorithms interpret vehicle 

motion commands from the computer and 
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apply closed-loop control to the motors.  Figure 7 shows a block diagram of the FPGA 

architecture.   

5.1 Data Gathering 

Custom hardware was developed in VHDL to gather the data from the sensors and drive the 

H-Bridges.  These hardware components consist of: 

 Six parallel PWM channels, capable of independent control of each motor 

 One I
2
C controller to grab data from the gyro, accelerometer and magnetometer 

 One SPI controller used to interface to external A/D hardware module to measure the 

steering angles, and apply high-speed filtering to clean up the measurements 

 Four parallel input capture channels to grab data from the magnetic wheel encoders 

All the custom hardware is interfaced to the MicroBlaze processor by means of a 32-bit wide 

processor bus, clocked at 50 MHz.  The processor addresses each hardware component in 

sequence and refreshes its measurement from each sensor.  At a rate of 20 Hz, it packages all the 

data into a serial packet and transmits it to the computer. 

5.2 Drive Control 

Botzilla’s drive system consists of four DC motors rotating the wheels of the vehicle, and 

two DC linear actuators controlling the steering mechanism on the front and rear wheels.  

Making use of the wheel encoder data being gathered by the FPGA, the MicroBlaze processor 

applies PI control to the wheel motors to match speed commands from the computer.  Likewise, 

the potentiometers on the steering motors are used by the MicroBlaze processor to apply a lead-

lag compensator to track angular position commands from the computer. 

6 ROS Software Platform 

Botzilla’s software systems are implemented on the Robot Operating System (ROS) 

platform.  ROS is an open-source development environment that runs in Ubuntu Linux.  There is 

a multitude of built-in software packages that implement common robotic functionality.  Firstly, 

there are many drivers for common sensors like LIDAR, cameras and GPS units.  There are also 

general-purpose mapping and path planning software modules that allow for much faster 

implementation of sophisticated navigation algorithms.  
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6.1 Efficient Node Communication 

An ROS system consists of a network of individual software modules called “nodes”.  Each 

node is developed in either C++ or Python, and runs independently of other nodes.  The nodes 

are all controlled by the ROS core.  Inter-node communication is made seamless by a behind-the-

scenes message transport layer.  A node can simply “subscribe” to a message that another node is 

“publishing” through a very simple structure-based interface in C++.  This allows for the 

development of easily modular and re-useable code, and shortens implementation time of new 

code. 

6.2 Debugging Capabilities 

One of the most powerful features of ROS is the debugging capability.  Any message passing 

between two nodes can be recorded in a “bag” file.  Bag files timestamp every message so that 

during playback, the message is recreated as if it were being produced in real time.  This way, 

software can be written, tested and initially verified without having to set up and run the robot. 

Another convenient debugging feature is the reconfigure_gui.  This is an ROS node that 

allows users to change program parameters on the fly using graphical slider bars.  This tool is 

invaluable, since most robotic vehicle controllers require precise adjustment of several 

parameters, and being able to change them while the program is running is very beneficial. 

7 Computer Vision 

Botzilla’s computer vision system is used in combination with a LIDAR to detect obstacles 

and lines in front of the robot. There are two separate algorithms used, one for general obstacle 

detection and another for flag detection. The input images of the system are first rectified using 

built in ROS functions. This compensates for the lens and camera sensor distortion making pixel 

coordinates linear with respect to the azimuth and zenith angular coordinates of the camera. 

Since object detection in the robot’s environment is highly color based, both algorithms use 

the Hue Saturation Value (HSV) color space. The Hue component describes the color much like 

a human would identify colors of the rainbow spectrum. The saturation component describes the 

closeness of the ratio of the color information to the pixel’s intensity.  Using HSV allows the 

systems to be relatively agnostic to lighting differences in an image.  For instance, the color in 

the Hue component of HSV changes slightly from normally lit grass to grass with the shadow of 

an obstacle. 
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7.1 Line and Obstacle Detection 

General line and obstacle detection for Botzilla is done using an adaptive median thresholding 

algorithm shown in Figure 8.  Since the competition course consists of mainly grass, the 

algorithm essentially defines anything that is not grass in the image as an obstacle.   

However, it was noticed that if the color of grass is defined to 

be a specific hue, some of the grass would be detected as an 

obstacle depending on the conditions. An adaptive median was 

added that calculates the median of the image and uses it as a 

replacement for the fixed value for thresholding.  The assumption 

is that the main component of the image will be the grass. In some 

situations this is not the case.  For instance, if the robot 

approaches several orange barrels the median will shift out of 

green and into the range of orange. 

 To prevent this from affecting the 

detection, an enhancement was made 

that records the deviation of the 

median of a representative video of 

grass. This way the system can be trained with a realistic range of 

colors that grass can be. When the median moves out of this range, 

the system will replace its value with the last good value of the 

median. 

7.2 Flag Detection 

Due to the different rules associated with flags, a separate flag 

detector was required for the system. Flags are distinctive using a combination of their size and 

color in an image. They are first detected by their color using a window thresholding algorithm, 

where the red and blue colors are each given a selective range that they are identified by. Pixels 

within each of the ranges are labeled ‘1’ in their respective images. A max and min width of 

flags that appear in the image was determined experimentally.  

To reject those red and blue components that fall outside these boundaries a morphological 

open is computed twice, once using a structuring element with the min width, once using a 
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structuring element with the max width plus one. The results are exclusive OR-ed together to 

reject those that fall outside the range.  

To remove noise introduced by the HSV conversion 

of pixels that don't have significant color, the saturation 

component is used. Pixels with values of saturation less 

than a certain constant value are not considered as flags. 

The results of a sample field of flags are shown in 

Figure 10. 

7.3 Obstacle Localization 

After the obstacles, lines and flags are detected, the 

next step is to transform their position in the camera 

image into relative position from the vehicle.  This is done through a calibrated reference frame 

transformation.  The main assumption is that all detected obstacles are on flat ground, and that 

the bottom-most detected pixel in each column represents a point on the ground.  An imitated 

LIDAR scan is then constructed by transforming each of these ground-level pixels into the 

vehicle reference frame.  This is adjusted for the flags, since they are not positioned directly on 

the ground.  In this case, an estimated height above the ground is assumed and used in the 

projection procedure.   

Figure 11 shows a block diagram of the transformation procedure.  The entire algorithm is 

calibrated by measuring 5 parameters:  the height of the camera h, the azimuth and zenith field of 

view angles ψ and ρ, and the pitch and yaw orientation of the camera θ  and φ.  The values of  , 

  and   are relatively easy to measure, but the orientation angles are not so easy, and inaccurate 

measurements can throw off positional accuracy significantly.  This complication was mitigated 
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by devising an automatic calibration algorithm. 

7.4 Automatic Camera Calibration 

Two objects are placed at known positions relative to the robot, and the pixel locations of 

each are set using the ROS reconfigure_gui node.  A K-means based learning algorithm uses 

these known quantities, and recursively estimates the two unknown angles.  The resulting 

calibration data has proven to be very accurate, with positions of detected obstacles being off by 

no more than 5% at any point. 

8 Navigation System 

A block diagram of Botzilla’s navigation system is shown in Figure 12.  The vehicle’s 

position and velocity is estimated by a Kalman filter that combines the measurements from all 

the sensors.  The position estimate and obstacle data are then fed into a SLAM mapping 

algorithm that constructs a map of the robot’s surroundings, allowing the robot to remember 

what it has seen before.  The global path planner uses the map and position estimate to construct 

a path to the current goal point.  The local planner then decides on vehicle motion commands 

that move the robot along the global path.   

Finally, a command bridge node is written to interpret the vehicle motion commands and 

translate them into Botzilla-specific control signals, while at the same time keeping track of 

waypoints, and sending the current waypoint to the global planner.  Figure 14 shows a screenshot 

of the Rviz 3-D visualization program showing an example of how the path planners find ways 

around the obstacles.   

8.1 Kalman Filtering 

The Kalman filter performs sensor fusion, where individual, noisy sensors are combined to 

estimate the position and velocity of the vehicle.  At the heart of the algorithm is a carefully 

derived kinematic state space model of Botzilla’s double-Ackermann style configuration.  The 

filter attributes how much noise is expected on each sensor, and how quickly the individual state 

variables change in the real world, and applies a set of recursive equations that estimate the state 

values based on current and prior sensor measurements.  Figure 13 shows a block diagram of the 

Kalman filter algorithm.  
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8.2 SLAM Mapping 

The Simultaneous Localization and Mapping (SLAM) algorithm is implemented in the built-

in ROS package called slam_gmapping.  This package accepts obstacle scan data from the object 

localization system (Section 7.3) and the Hokuyo LIDAR, and uses the position estimate from 

the Kalman filter.  slam_gmapping then constructs a map by adding the new scan data, while 
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correlating the scan data with the existing map to avoid double-

mapping the same obstacles, and to re-align the map to account 

for gradual drift error.   

8.3 Global Path Planning 

The global path planning algorithm is based on A*, and is 

part of the sbpl_lattice_planner package built into ROS.  The 

planner takes in the state estimate from the Kalman filter, the 

map generated by slam_gmapping, and the location of the 

current waypoint from the command bridge, and solves an 

optimal path from the current robot position to the goal.  This 

optimal path is generated from a sequence of feasible 

maneuvers based on the robot’s dynamics.  It then sends out this 

path as a sequence of points for the local planner to use. 

8.4 Local Path Planning 

The role of the local path planner is to follow the global path to the goal as closely as 

possible, while adding reactionary obstacle avoidance behavior.  In addition, it detects scenarios 

where the robot is stuck, and finds a way to escape using the constraints of the map.  The local 

planner is based on the base_local_planner  ROS node, but modified to support Botzilla’s 

specific requirements for IGVC. 

8.5 Command Bridge 

The command bridge converts the vehicle motion commands from the local path planner and 

turns them into individual motor speed and steering angle commands to be sent to the FPGA.  

The bridge also monitors the waypoint list and the vehicle’s current GPS location, and 

communicates with the global path planner to generate paths to the current goal.  It is written in 

C++ code and run as a ROS node.   

9 Performance Analysis 

9.1 Maximum Speed 

Botzilla’s motors spin at 157 RPM at nominal load, so combined with 15 inch diameter 

wheels, the resulting maximum speed is 10.3 mph.  This estimate correlates with the observed 

performance. 

Figure 14: Visualization of the 

mapping and path 
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9.2 Ramp Climbing Ability 

At nominal load, the drive motors provide 101 in-lbs of torque.  Assuming a realistic vehicle 

weight of 175 lbs, this corresponds to a max slope of 18 degrees.  However, experiments have 

shown that Botzilla can handle much steeper slopes, up to about 30 degrees, although not at the 

nominal load of the motors. 

9.3 Reaction Time 

The ROS system running on the laptop gathers new sensor readings from the FPGA at 20Hz, 

and processes camera frames and extracts obstacle locations at 15 frames per second.  The 

artificial intelligence systems were designed to be able to handle this frequency easily, thereby 

allowing the robot to make new decisions at the slowest sensor sampling rate 15 Hz = 66.7 ms. 

9.4 Battery Life 

The AGM batteries on Botzilla provide a total of 60 AH.  The sensors and FPGA consume 2 

amps.  Experiments have shown that the steering motor current draw averages 3 amps under 

normal operating conditions, and that the drive motors consume a total of 25 amps maximum in 

a grass environment typically encountered at IGVC.  Based on these observations, total battery 

life is approximately 2 hours.  

9.5 Obstacle Detection Range 

Using the monocular vision-based obstacle detection system (Section 7.1), obstacles can be 

detected up to a maximum of 24 feet away, although it was experimentally determined that 

vision measurement data becomes most reliable within 17 feet.  The camera configuration also 

makes the front of the vehicle visible.  This allows for the vision system to detect lines and 

obstacles up to 3 feet to either side of the front wheels, thereby minimizing the size of critical 

blind spots.  The Hokuyo LIDAR has a range of about 13 feet, but has shown to provide less 

noisy distance measurements at longer range than the camera system. 

9.6 GPS Accuracy 

Under normal conditions, the Novatel FlexPackG2-Star GPS receiver is accurate to within 1 

meter, which is enough positional accuracy to reach the small waypoints on the GPS Challenge 

course.  However, the Kalman filter algorithm (Section 8.1) fuses the GPS readings with the rest 

of the sensors to eliminate some of the noise. 
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10 Vehicle Equipment Cost 

A breakdown of the cost of the components on Botzilla is shown in Table 1. 

Table 1: Cost breakdown of components 

Item Cost Cost to Team 

FlexG2-Star GPS Unit $1,000 $1,000 

Hokuyo URG-04LX LIDAR $2,375 $0
1
 

Dell Latitude E5410 Laptop $800 $800 

MicroEye UI-155xLE Camera $460 $460 

Sparkfun 9-DOF Sensor Stick $89 $89 

Phoenix America P9122 Encoders $152 $152 

(4) 12V AGM Batteries $375 $0
2
 

Power Electronics $600 $600 

Fiberglass Body $2,000 $0
3
 

Electromechanical Components $1,000 $1,000 

Frame Materials $1,000 $1,000 

Total $9,851 $5,101 

   
11 Conclusion 

Botzilla has proven to be very rugged, efficient and reliable, performing well while driving 

on any kind of terrain.  The new artificial intelligence design shows promising results, and the 

Oakland University team has great confidence going into this year’s competition. 
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